Living the Farm to Fork Strategy on the Farm

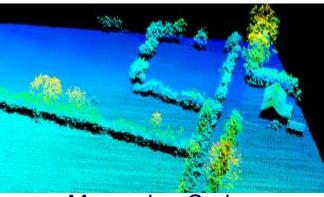
Prof. John Gilliland 08/03/23

The Start of the Journey - The Lands at Dowth, Ireland

Delivering Multiple Public Goods, Simultaneously, from farming livestock

Purchased in 2013, 185ha Grasslands & Woods

Improving Water Quality Reducing Over Land Flow



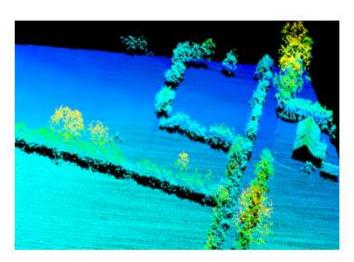
Delivering Soil Improvement Fertility & Health

Optimising Biodiversity, Understanding Trade Offs

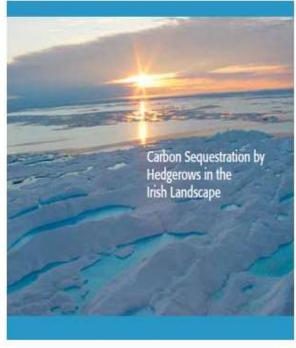
Measuring Carbon
Sequestration, Above & Below

Managing our Landscape
UNESCO World Heritage Site

DEVENISH

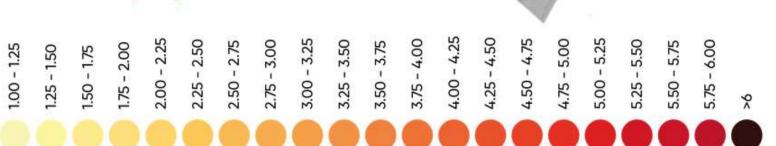


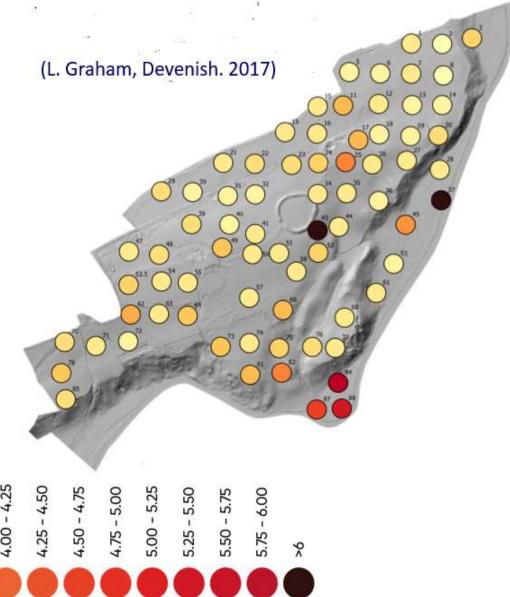
Created Carbon Baselines


Aerial LiDAR Survey measured Total Above Ground Biomass (2014)

	Woods	Hedges	Total
Biomass Density (t C/ha)	83	127	86
Total Biomass in Dowth (t C)	3495	385	3880
Sequestration Potential for Dowth (t C/Yr)	50	1.2	51

Created Carbon Baselines

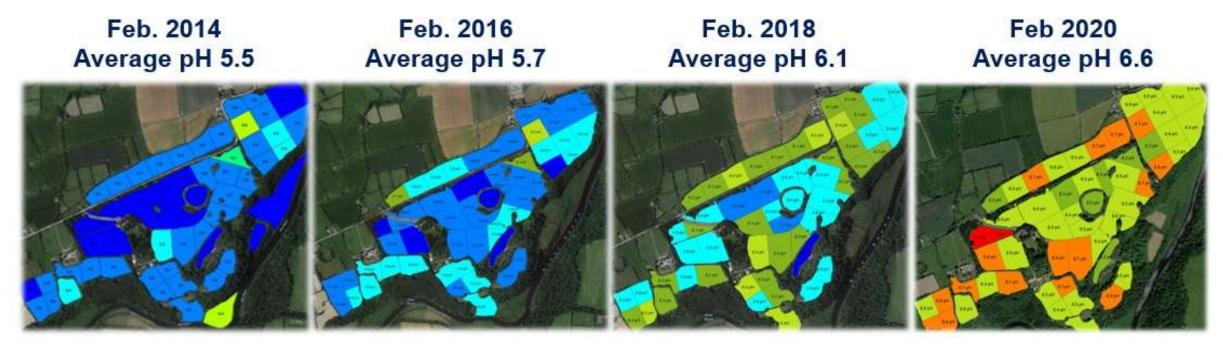

Sampled Soil Carbon to 30cm (2017)

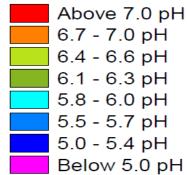

Representative Sampling of Soils under Grass 88 soil pits, GPS positioned, for repeat sampling

No ploughing for 40 Years Some land never ploughed Soil Type – Brown Earth

Average Soil Carbon - 2.1% Expected Soil Carbon - 4 to 5%

Repeating Baselines allows progress to be Measured





Accelerating Productivity & Sequestration - Improving Soil pH

Through disciplined precision, GPS, Biennial, Soil Sampling & Analysis, every 2 Yrs

Delivered Credible Transparency of Soil Improvement at Dowth

Dowth Soils now at Optimal pH after six years, with expecting increase in Carbon

Reducing GHG Emissions through the use of a "Living Lab...."

Investigated & Delivered Multiple Benefits by switching to Multispecies Swards

In One Year.....

65% Reduction in Nitrogen

20% Improvement in ADWG

300% Increase in earthworms

14 times faster water infiltration of soil

A 26% reduction in GHG intensity per kg of meat, without recognition of increases in soil carbon....

Leveraging Dowth's Experience

Accelerating Seven farms towards Net Zero

Delivering Positive Change by Empowering Farmers with

Gross Emissions, Gross Sequestration & Net Carbon Position; Soil fertility; Soil, Nutrient and Pesticide Run Off Risk Maps.

Partners

AFBI – Carbon in trees, hedges & soil P risk maps AgriSearch – Communications Devenish – Net farm Carbon Calculation QUB – Soil Carbon SRUC – AgReCalc calculator for Gross Emissions

A Case Study - Accelerating change at Ballydevitt Dairy farm

100ha, family partnership, managed by Hugh & Thompson Harbison 180 Autumn Calving Cows, averaging 8,600 litres of milk, Aghadowey

Baselining of Above Ground Carbon, Trees & Hedges (Alex Higgins, 2021)

	Harbison Farm Totals											
Vegetation type	Hedge Length (km)	AGB (t)	C (t)	BGB* (t)	C (t)	Total C (t)						
Hedge 0-4m	10.34	154.52	73.7	29.67	13.9	87.6						
Hedge 4-7m	2.42	45.59	21.7	8.75	4.1	25.9						
Hedge 7-10m	2.13	88.59	42.2	17.01	8.0	50.2						
Hedge >10m	3.89	398.23	189.9	76.46	35.9	225.9						
Total Hedges	18.78	686.92	327.6	131.9	62.0	389.6						
	Canopy Area (ha)											
Single Trees	0.11	5.05	2.4	0.97	0.5	2.9						
Deciduous Woodland	4.51	256.28	122.2	49.21	23.1	145.3						
Coniferous Woodland	0	0.00	0.0	0.00	0.0	0.0						
Total	4.62	948.25	452.2	182.1	85.6	537.8						

BGB – Below Ground Biomass (Roots)

Getting a better Understanding of Soil Organic Carbon

How to measure it..... What influences it......

Baselining Ballydevitt's Total Farm Carbon Stocks in Soils, Trees & Hedges

Land Category	Total ha	Av. LOI/SOM	No of soil Cores	No of Samples	Av. C. 0-10cm	Av. C. 0-30cm	Av. C/ha	Av. C/Category	C. 0-30cm Variation	Av. pH
10-20% Soil Org. Matter, Rotational Grass, Slurry, Only Cut	13.7ha	16.10%	35	7	5.80%	4.10%	133t	1,825t	3.1 - 5.1%	6
10-20% Soil Org. Matter, Rotational Grass, Slurry, Cut & Grazed	6.7ha	17.30%	25	5	6.40%	4.80%	153t	1,032t	3.8 - 5.3%	6.2
10-20% Soil Org. Matter, Rotational Grass, Slurry, Only Grazed	30.9ha	17.20%	50	10	7.70%	5.20%	162t	4,998t	4.4 - 5.3%	6.4
10-20% Soil Org. Matter, Permanent Grass, Slurry, Only Grazed	2.2ha	17.90%	15	3	5.50%	4.70%	159t	346t	4.0 - 6.1%	6.7
20-30% Soil Org. Matter, Rotational Grass, Slurry, Only Cut	4.2ha	21.10%	15	3	7.60%	4.40%	144t	605t	2.6 - 5.9%	5.8
20-30% Soil Org. Matter, Permanent Grass, No Slurry, Only Grazed	2.2ha	21.20%	15	3	10.50%	5.70%	168t	370t	5.1 - 6.7%	6
20-30% Soil Org. Matter, Rotational Grass, Slurry, Cut & Grazed	1.6ha	23.10%	15	3	15.40%	9.40%	247t	395t	5.7 - 15.8%	6.2
20-30% Soil Org. Matter, Rotational Grass, Slurry, Only Grazed	32.7ha	22.60%	60	12	8.80%	6%	183t	5,984t	3.4 - 9.8%	6.3
>30% Soil Org. Matter, Rotational Grass, Slurry, Only Grazed	7.7ha	40%	25	5	16.90%	13.90%	344t	2,649t	7.2 - 23.2%	6.4
10-20% Soil Org. Matter, Decideous Woodland	1.5ha	15.70%	15	3	8.20%	6%	167t	228t	3.6 - 10.7%	6.1
20-30% Soil Org. Matter, Scrubland	0.8ha	21.60%	15	3	10.30%	8.80%	210t	162t	7.9 - 9.6%	5.9
Sampling Density, 1 composite sample per 1.8ha or 2.7 cores/ha	104ha		285 Soil Cores	57 C. Samples			179t/ha	18,594t of C.		

Total Soil Carbon

18,594t of C, or 68,054t of CO2e

Baselining Ballydevitt's Total Farm Carbon Stocks in Soils, Trees & Hedges

Land Category	Total ha	Av. LOI/SOM	No of soil Cores	No of Samples A	v. C. 0-10cm	Av. C. 0-30cm	Av. C/ha	Av. C/Category	C. 0-30cm Variation	Av. pH
10-20% Soil Org. Matter, Rotational Grass, Slurry, Only Cut	13.7ha	16.10%	35	7	5.80%	4.10%	133t	1,825t	3.1 - 5.1%	6
10-20% Soil Org. Matter, Rotational Grass, Slurry, Cut & Grazed	6.7ha	17.30%	25	5	6.40%	4.80%	153t	1,032t	3.8 - 5.3%	6.2
10-20% Soil Org. Matter, Rotational Grass, Slurry, Only Grazed	30.9ha	17.20%	50	10	7.70%	5.20%	162t	4,998t	4.4 - 5.3%	6.4
10-20% Soil Org. Matter, Permanent Grass, Slurry, Only Grazed	2.2ha	17.90%	15	3	5.50%	4.70%	159t	346t	4.0 - 6.1%	6.7
20-30% Soil Org. Matter, Rotational Grass, Slurry, Only Cut	4.2ha	21.10%	15	3	7.60%	4.40%	144t	605t	2.6 - 5.9%	5.8
20-30% Soil Org. Matter, Permanent Grass, No Slurry, Only Grazed	2.2ha	21.20%	15	3	10.50%	5.70%	168t	370t	5.1 - 6.7%	6
20-30% Soil Org. Matter, Rotational Grass, Slurry, Cut & Grazed	1.6ha	23.10%	15	3	15.40%	9.40%	247t	395t	5.7 - 15.8%	6.2
20-30% Soil Org. Matter, Rotational Grass, Slurry, Only Grazed	32.7ha	22.60%	60	12	8.80%	6%	183t	5,984t	3.4 - 9.8%	6.3
>30% Soil Org. Matter, Rotational Grass, Slurry, Only Grazed	7.7ha	40%	25	5	16.90%	13.90%	344t	2,649t	7.2 - 23.2%	6.4
10-20% Soil Org. Matter, Decideous Woodland	1.5ha	15.70%	15	3	8.20%	6%	167t	228t	3.6 - 10.7%	6.1
20-30% Soil Org. Matter, Scrubland	0.8ha	21.60%	15	3	10.30%	8.80%	210t	162t	7.9 - 9.6%	5.9
Sampling Density, 1 composite sample per 1.8ha or 2.7 cores/ha	104ha		285 Soil Cores	57 C. Samples			179t/ha	18,594t of C.		

Total Soil Carbon
Total Carbon in Trees & Hedges
Total Farm CO₂e Stocks

18,594t of C 538t of C 19,132t of C x 3.66 = **70,023t of CO₂e**

And if you repeat every five years, you can measure change transparently

Measuring Ballydevitt's Gross & Net Emissions using LCA

Activity	Farm Emissions (kg CO₂e)
Gross operation emissions	2,019,742
Compared to AgReCalc. Av.	-2.20%
Soil Carbon Sequestration	-525,478
Woodland Sequestration	-23,958
Renewables avoided emissions	-13,077
Net Farm Carbon Emissions	1,457,229

Net Emissions 28% less than Gross Emissions, when Sequestration & Renewables recognised......

Reducing Emissions from Ballydevitt Farm

Planting more herbs & legumes to reduce use of synthetic Nitrogen

	Baseline: (25% clover pasture/silage) Currently 181 units on Grazing	60% reduction in N, 35%/30% clover, all urea Percentage Change (%) rel to baseline
Sward Clover Content (%)	25	20.0
C02 Emissions	686,945	-9.5
Methane Emissions	925,993	0.1
Nitrous Oxide Emissions	398,942	-14.3
Total CO2e Emissions from Farming	2,011,880	-6.0
Whole farm C02e Emissions	1.20	-5.8
Emissions per hectare*	20,145	-6.0

Reduces Total Emissions from Farming by 6%, retrospectively Saving £15,838 annually, at today's fertiliser prices

Delivering Multiple Public Goods by planting Herbs & Legumes Comparing Soil Carbon change after two years

	Acreage	7.5cm	10cm	30cm
Perennial Rye Grass	5.8ha	16.90%	8%	5.40%
Multi Species	4.9ha	16.10%	8.30%	7.32%

Herbs, Legumes & Grass together, creating more & deeper Carbon

Delivering Multiple Public Goods by Planting Herbs & Legumes

Improving Water Quality by using Run Off Risk Maps

(Rachel Cassidy, 2021) Farm: Harbison 1 Runoff Risk Maps Waterbody Lines Critical Source Areas - high soil Ofsen P in these fields means these areas have elevated risk of P loss to water Hydrologically Sensitive Areas for runoff generation and loss of nutrients*, sediment and other applied substances.

Net Emissions across the ARC Zero farms

Giving farmers an understanding where they are on journey to Net Zero

Name	Enterprises	Gross Emissions	Gross Sequestrat	ion Net Emissions	% Reduction
Ian McClelland	Dairy	1,125t/yr	309t/yr	816t/yr	27%
Hugh Harbison	Dairy	2,012t/yr	550t/yr	1,462t/yr	27%
John Egerton	Beef	1,404t/yr	442t/yr	962t/yr	31%
Roger Bell	Sheep with Beef	820t/yr	455t/yr	365t/yr	56%
Simon Best	Arable with Beef	1,799t/yr	738t/yr	1,061t/yr	59%
John Gilliland	Willow with dry cows	151t/yr	156t/yr	-5t/yr	103%

All farms are in a different place on their Journey to Net Zero Some Farms will find the Journey a lot easier than others....

Some farms will never reach Net Zero.....

But..... There is a Catch.....

All Governments must report annually against their agreed International GHG reduction targets. The **GHG National Inventory** is the vehicle used to do this.

IPCC SOURCE AND SINK CATEGORIES	CO ₂	CH₄	N ₂ O
1. Energy	M T1, T2, T3	M, T1, T2, T3	M, T1, T2, T3
A. Fuel Combustion (Sectoral Approach)	M, T1, T2, T3	M, T1, T2, T3	
Energy Industries	T1, T3	T1, T2	T1, T2
2. Manufacturing Industries and Construction	T1, T2, T3	T1	T1
3. Transport	M, T2, T3	M, T1, T3	M, T1, T3
4. Other Sectors	T1, T2	T1	T1
5. Other	1		
B. Fugitive Emissions from Fuels	CS. T3	CS, T1, T3	CS, T3
Solid Fuels	NA	T1	NA
Oil and Natural Gas	CS, T3	CS, T1, T3	CS, T3
C. Carbon Dioxide Transport and Storage	NA		f
3. Agriculture	T1	CS, T1, T2	T1, T2
A. Enteric Fermentation		CS, T1, T2	NA
B. Manure Management	50	T1, T2	T2
C. Rice Cultivation		NA	NA
D. Agricultural Soils		NA	T1
E. Prescribed Burning of Savannas		NA	NA
F. Field Burning of Agricultural Residues		NA	NA
G. Liming	T1		
H. Urea Application	T1		
I. Other	NA	7	

4. Land-Use, Land-Use Change and Forestry	CS, D, T1, T2, T	D, T1, T2	D, T1, T2
A. Forest Land	CS, T1, T2, T3	D, T1	D, T1
B. Cropland	CS, D	D, T1	D, T1
C. Grassland	D, T1, T2, T3	D, T1	D, T1
D. Wetlands	D, T1, T2, T3	D, T2	D, T2
E. Settlements	D, T1, T3	NA	T1
F. Other Land	T1, T3	NA	T1
G. Harvested wood products	T2		
H. Other	NA	NA	NA
5. Waste	T1	T1, T2	T1
A. Solid Waste Disposal	NA	T2	NA
B. Biological treatment of solid waste	NA	T1	T1
C. Incineration and open burning of waste	T1	T1	T1
D. Wastewater treatment and discharge	NA	T1, T2	T1
E. Other	NA	NA	NA

But..... There is a Catch.....

H. Urea Application

All Governments must report annually against their agreed International GHG reduction targets. The **GHG National Inventory** is the vehicle used to do this.

IPCC SOURCE AND SINK CATEGORIES	CO ₂	CH₄	N₂O	4. Land-Use, Land-Use Change and Forestry	CS, D, T1, T2, T3	D, T1, T2	D, T1, T2
1. Energy	M T1, T2, T3	M, T1, T2, T3	M, T1, T2, T3	A. Forest Land	CS, T1, T2, T3	D, T1	D, T1
A. Fuer combustion (Sectoral Approach)	M, T1, T2, T3		M, T1, T2, T3	B. Cropland	CS, D	D, T1	D, T1
. Energy Industries	T1, T3	T1, T2	T1, T2	C. Grassland	D, T1, T2, T3	D, T1	D, T1
. Manufacturing Industries and Construction	T1, T2, T3	T1	T1	D. Wetlands	D, T1, T2, T3	D, T2	D, T2
. Transport	M, T2, T3	M, T1, T3	M, T1, T3	E. Settlements	D, T1, T3	NA	T1
. Other Sectors	T1, T2	T1	T1	F. Other Land	T1, T3	NA	T1
. Other		, M		G. Harvested wood products	T2		3
. Fugitive Emissions from Fuels	CS. T3	CS, T1, T3	CS, T3	H Odler	NA	NA	NA
Solid Fuels	NA	T1	NA	5. Waste	T1	T1, T2	T1
. Oil and Natural Gas	CS, T3	CS, T1, T3	CS, T3	A. Solid Wasto Disposal	NA	T2	NA
. Carbon Dioxide Transport and Storage	NA		1	B. Biological treatment of solid waste	NA	T1	T1
3. Agriculture	T1	CS, T1, T2	T1, T2	C. Incineration and open burning of waste	T1	T1	T1
Entoric Formandtion	***	CS, T1, T2	NA	D. Wastewater treatment and discharge	NA	T1, T2	T1
Manure Management		T1, T2	T2	E. Other	NA	NA	NA
. Rice Cultivation		NA	NA				
D. Agricultural Soils	3 l Jr.	NA	T1				
Prescribed Burning of Savannas		NA	NA				
F. Field Burning of Agricultural Residues		NA	NA				
	ne at	200.00					

It is a collection of Individual Silos designed for easy Accounting & Reporting

But..... There is a Catch.....

G. Liming

H. Urea Application

	(Ver	78					
IPCC SOURCE AND SINK CATEGORIES	CO ₂	CH ₄	NzO	4. Land-Use, Land-Use Change and Forestry	CS, D, T1, T2, T3	D, T1, T2	D, T1, T2
1. Energy	M T1, T2, T3	M, T1, T2, T3	M, T1, T2, T3	A. Forest tand	CS, T1, T2, T3	D, T1	D, T1
A. Fuer Compustion (Sectoral Approach)	M, T1, T2, T3		M, T1, T2, T3	B. Cropland	CS, D	D, T1	D, T1
Energy Industries	T1, T3	T1, T2	T1, T2	C. Grassland	D, T1, T2, T3	D, T1	D, T1
2. Manufacturing Industries and Construction	T1, T2, T3	T1	T1	D. Wetlands	D, T1, T2, T3	D, T2	D, T2
3. Transport	M, T2, T3	M, T1, T3	M, T1, T3	E. Settlements	D, T1, T3	NA	T1
4. Other Sectors	T1, T2	T1	T1	F. Other Land	T1, T3	NA	T1
5. Other		20		G. Harvested wood products	T2		
B. Fugitive Emissions from Fuels	CS. T3	CS, T1, T3	CS, T3	P. Strief	NA	NA	NA
Solid Fuels	NA	T1	NA	5. Waste	T1	T1, T2	T1
2. Oil and Natural Gas	CS, T3	CS, T1, T3	CS, T3	A. Solid Wasto Disposal	NA	T2	NA
C. Carbon Dioxide Transport and Storage	NA		1	B. Biological treatment of solid waste	NA	T1	T1
3. Agriculture	T1	CS, T1, T2	T1, T2	C. Incineration and open burning of waste	T1	T1	T1
A Enteric Formandtion		CS, T1, T2	NA	 D. Wastewater treatment and discharge 	NA	T1, T2	T1
B. Manure Management		T1, T2	T2	E. Other	NA	NA	NA
C. Rice Cultivation		NA NA	NA				
D. Agricultural Soils	e (r.	NA	T1				
E. Prescribed Burning of Savannas	3	NA	NA				
F. Field Burning of Agricultural Residues		NA	NA				

Farm Businesses don't fit within the Inventory, as they are multifaceted, they are split between a possibility of four different Silos, which do not allow recognition of each other.....

Living the Farm to Fork Strategy on the Farm

- Systems thinking essential to deliver Multiple Public Goods, simultaneously
- Baselines essential at individual farm level, to inform Positive Behavioural Change
- Good quality MRV needed to show the journey has Integrity
- Net Zero will only happen when farmers Unshackled & allowed to use sequestration & renewables, as well as emission reductions

