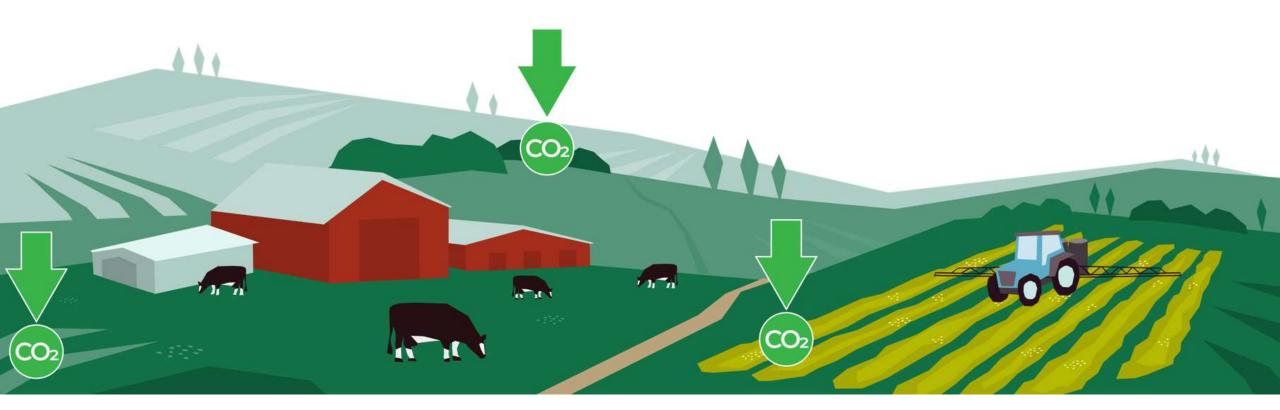

Achieving Net Zero – The Role of Increasing Carbon Stocks on Farm

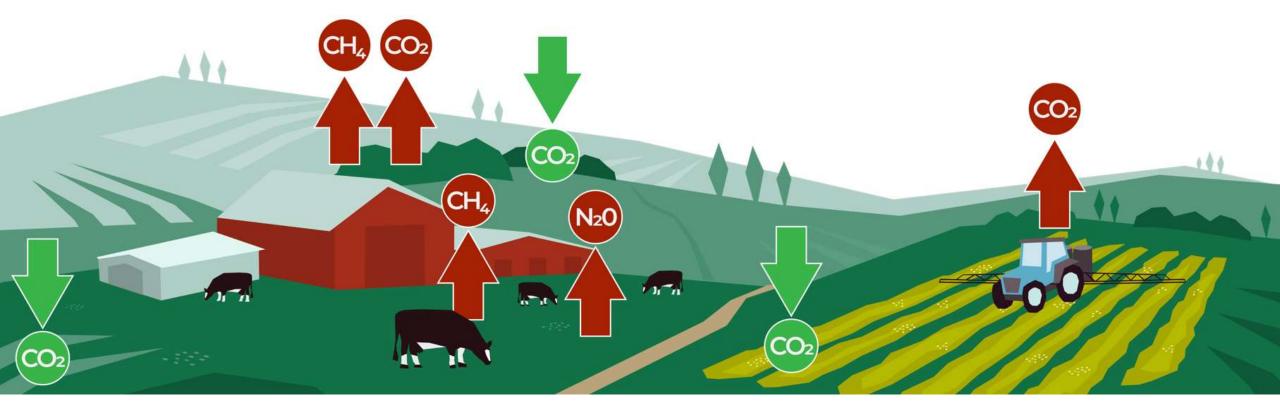
Prof. John Gilliland OBE

Director of Agriculture & Sustainability, Devenish Chair, ARC Zero; & Professor of Practice, Queens University Belfast September 2022

Sustainable Meat and Livestock Production


Net Zero, A definition in Three Steps, for a Farm Business.... Gross Emissions, the sum of all CO₂, CH₄ & N₂O emissions

Currently what farm businesses are reported on today......


Gross Sequestration, the sum of All new Carbon locked up in Soil & Trees

Currently not measured, or reported on, as deemed too hard to measure.... Yet it is Recognised by IPCC as essential to achieve, Net Zero, by 2050

Net Zero Carbon : Where the Sum of Emissions equals Sum of Sequestration Adjusted for any fossil fuel CO2 emissions displaced by Renewables

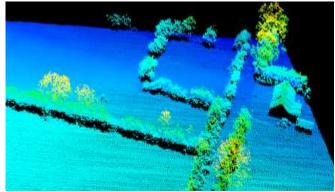
It is not about Zero Emissions..... What is the Role & Opportunity to credibly increase Carbon Stocks???

The Lands at Dowth

GLOBAL NETWORK OF

Delivering Multiple Public Goods, Simultaneously, from farming livestock

Purchased in 2013, 185ha Grasslands & Woods


Improving Water Quality Reducing Over Land Flow

Delivering Soil Improvement Fertility & Health

Optimising Biodiversity, Understanding Trade Offs

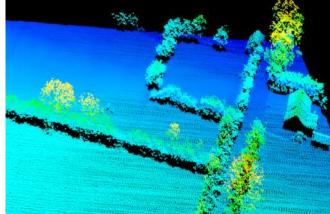
Measuring Carbon Sequestration, Above & Below Ground

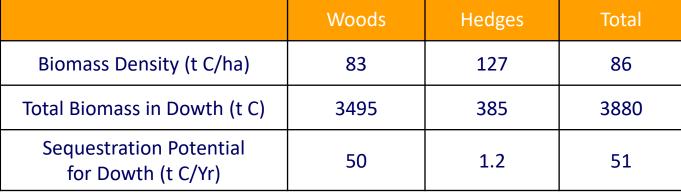
Managing our Landscape UNESCO World Heritage Site DEVENISH

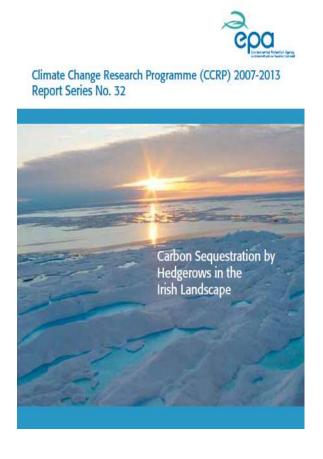
If you can't Measure..... You will Never be able to Manage.... Creating a Robust, Scientific Base Line to aid Future Management Decisions

Surveys carried out in 2014

Aerial LiDAR; Geophysics by Romano Germanic Commission; GPS Soil Analysis In partnership with Dr Steve Davis, UCD School of Archaeology, for Devenish






Creating the Baseline of Carbon Stocks

Aerial LiDAR Survey measured Total Above Ground Biomass @ 40 scans per metre (2014)

S. Green, Teagasc, 2014

LiDAR Survey repeated in 2021 to measure scale of change since 2014

Creating the Baseline of Carbon Stocks

Sampled Soil Carbon to 30cm (2017)

Representative Sampling of Soils under Grass 88 soil pits, GPS positioned, for repeat sampling

No ploughing for 40 Years Some land never ploughed Soil Type – Brown Earth

Average Soil Carbon - 2.1% Expected Soil Carbon - 4 to 5%

Why the disparity in Soil Carbon Levels?

1.25 - 1.50

1.50 - 1.75

1.00 - 1.25

2.75 - 3.00 3.00 - 3.25 3.25 - 3.50

1.75 - 2.00 2.00 - 2.25 2.25 - 2.50 2.50 - 2.75

(L. Graham, Devenish. 2017) 4.25 - 4.50 4.00 - 4.25 4.75 - 5.00 4.50 - 4.75 5.00 - 5.25 3.75 - 4.00 5.25 - 5.50 5.50 - 5.75 3.50 - 3.75 5.75 - 6.00 ò

Total Carbon Stocks at Dowth, managed Annually

Carbon in Soils	Area (ha)	Av. t/ha of C	Total C (t)	Total CO2e (t)	% of Acreage
Grazing Ground	92	58	5,336	19,530	
Woods	42	71	2,982	10,914	
Flood Plains	10	277	2,770	10,138	
Hedges	8	71	568	2,079	
Total Carbon in Soils				42,661	72%
Above Ground Carbon					
Hedges	8	127	1,016	3,719	
Woods	42	83	3,486	12,759	
Total Above Ground Carbon				16,478	28%
Total CO2e Stocks at Dowth				59,139	

Farmers are Custodians of much of the Nation's Carbon.....

Estimated Annual Carbon Sequestration at Dowth

Using Carbon Baselines & Sequestration Factors from Peer Review Publications

	Area Ha	Carbon Seq. in Soils t of C/ha/ yr	Total soil Seq. t/ yr	Carbon Seq. in Trees t of C/ha/ yr	Total tree Seq. t/ yr
Grazing ground	91.91	0.5	46		
Woods	42	1.6	67.2	1.2	50
Floodplains	10.2				
Hedgerows	7.89	1.6	12.62	0.4	3
Total land area	156.48				
		Total soil seq./ yr	128	Total trees seq./ yr	54
		Total Dowth carbon s	sequestration, t of C/	yr.	181.6
		Total Dowth CO2e seq	uestration, t of CO2 e	/ yr	665

D. Fornara & J. McAdam 2018, S. Green 2014, L. Graham 2017, D. Hagan 2018

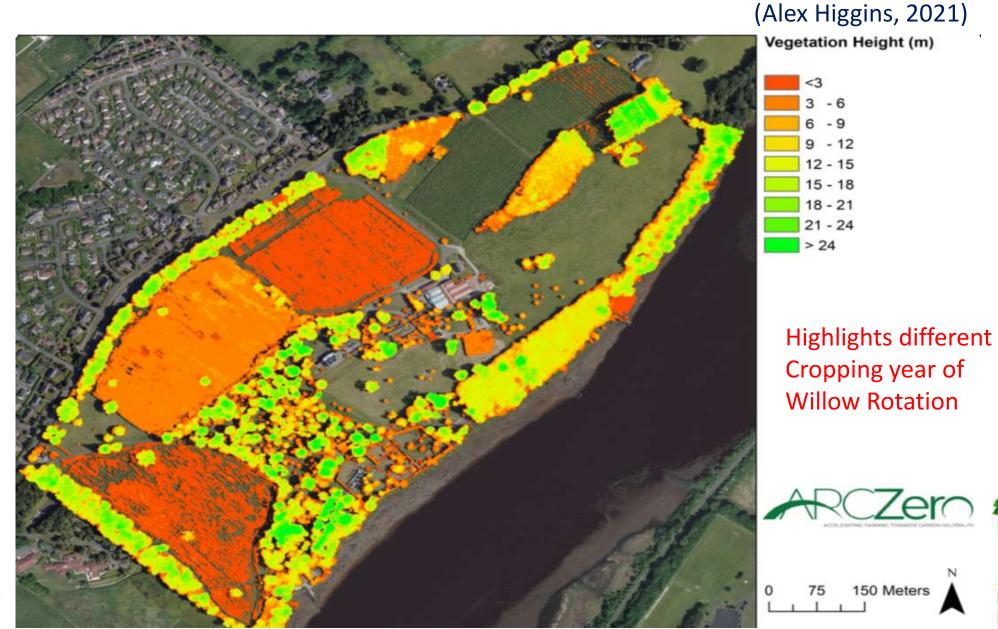
Leveraging the Lands at Dowth's Knowledge by Accelerating Seven farms towards Net Zero

Delivering Positive Change by Empowering Farmers with

Gross Emissions, Gross Sequestration & Net Carbon Position; Soil fertility; Soil, Nutrient and Pesticide Run Off Risk Maps.

Partners

AFBI – Carbon in trees, hedges & soil P risk maps
AgriSearch – Communications
Devenish – Net farm Carbon Calculation
QUB – Soil Carbon
SRUC – AgReCalc calculator for Gross Emissions


The European Agricultural Fund for Rural Development: Europe investing in rural areas

Created Baselines with Smarter LiDAR & Ortho Imaging Surveys, Brook Hall

Using LiDAR to Measure Carbon in Trees & Hedges, Brook Hall

Using LiDAR to Measure Carbon in Trees & Hedges, Brook Hall

(Alex Higgins, 2021)

		Brook	Hall Estate	Totals		
Vegetation type	Hedge Length (km)	AGB (t)	C (t)	BGB* (t)	C (t)	Total C (t)
Hedge 0-4m	0.78	14.92	7.1	2.86	1.3	8.5
Hedge 4-7m	0.35	6.36	3.0	1.22	0.6	3.6
Hedge 7-10m	0.25	10.32	4.9	1.98	0.9	5.9
Hedge >10m	1.00	156.17	74.5	29.99	14.1	88.6
Total Hedges	2.38	187.77	89.5	36.05	16.94	106.49
	Canopy Area (ha)					
Single Trees	1.87	494.78	236.0	95.00	44.6	280.6
Deciduous Woodland	17	1352.74	645.1	259.73	122.1	767.2
Coniferous Woodland	0.09	6.17	2.9	1.27	0.6	3.5
Biomass	28.96	337.61	161.0	64.82	30.5	191.5
Total	47.92	2,379.07	1,134.6	456.8	214.7	1,349.3


AGB – Above Ground Biomass

BGB – Below Ground Biomass (roots)

Created Baselines with Smarter Soil Sampling Techniques Originally, manually augured to 30cm, now automated to core to 100cm

IPCC Standard is to 30cm, but many soil amendments lay new carbon down deeper...

Brook Hall's Total Carbon Stocks

Soil Carbon in top 30cm & Above Ground Carbon

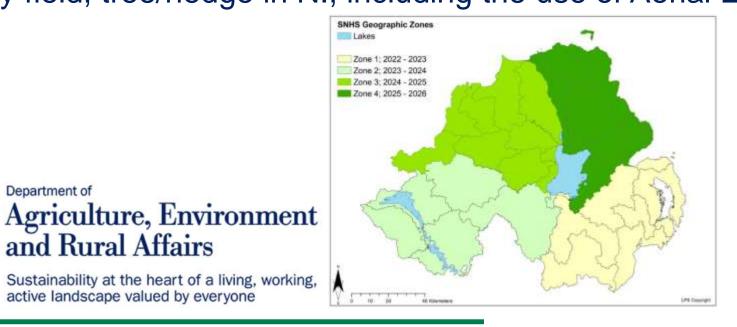
Land Category	Total ha	Soil pH	Av. LOI/SOM	No. of Soil Cores	No. of Samples	Av. C. 0-10cm	Av. C. 0-30cm	Av. C/ha	Av. C/Category
<10% Soil Org. Matter, Short Rotation Willow Coppice	34.2ha	pH 6.2	7.60%	55	11	4.20%	3.20%	87.1t	2,978.8t
<10% Soil Org. Matter, Permanent Grass, no slurry/FYM, only grazed	1.4ha	pH 6.3	9.30%	15	3	4.90%	3.10%	87.3t	122.2t
<10% Soil Org. Matter, Decideous Woodland	0.5ha	pH 5.3	9.10%	15	3	5.80%	4.10%	114.7t	57.4t
10-20% Soil Org. Matter, Permanent Grass, no slurry/FYM, only grazed	12.9ha	pH 6.1	13.70%	30	6	5.50%	3.40%	93.7t	1,208.7t
10-20% Soil Org. Matter, Silvopasture, no slurry/FYM	4ha	pH 4.8	14.80%	25	5	5%	2.80%	81.6t	326.4t
10-20% Soil Org. Matter, Decideous Woodland	4.6ha	pH 5.3	13%	25	5	6.90%	4.90%	136t	<u>625.6</u> t
Totals	57.6ha			165 Soil Cores	33 C. Samples			92.3t/ha	5,319.1t of C.

Total Soil Carbon= 5,319t of CTotal Above Ground Carbon = 1,349t of CBrook Hall's Total Carbon= 6,668t of C or 24,405t of CO2e

Net Emissions Calculated across the ARC Zero farms

Giving farmers an understanding where they are on journey to Net Zero agrecalc

Enterprises Dairy Dairy	Gross Emissions 1,125t/yr 2,012t/yr	Gross Sequestration 309t/yr	816t/yr	27%
Dairy	2.012t/vr	EE OH / Jun		
		550t/yr	1,462t/yr	27%
Beef	1,404t/yr	442t/yr	962t/yr	31%
Sheep with Beef	820t/yr	455t/yr	365t/yr	56%
Arable with Beef	1,799t/yr	738t/yr	1,061t/yr	59%
Willow with dry cows	151t/yr	156t/yr	-5t/yr	103%
	Sheep with Beef Arable with Beef	Sheep with Beef820t/yrArable with Beef1,799t/yr	Sheep with Beef820t/yr455t/yrArable with Beef1,799t/yr738t/yr	Sheep with Beef820t/yr455t/yr365t/yrArable with Beef1,799t/yr738t/yr1,061t/yr


All farms are in a different place on their Journey to Net Zero Some Farms will find the Journey a lot easier than others....

Some farms will never reach Net Zero.....

Scaling Up - N. Ireland Soil Nutrient & Health Scheme Opened Baselining every field, tree/hedge in NI, including the use of Aerial LiDAR Survey

Agriculture Minister opens £45million Soil Nutrient Health Scheme investment over four years

Date published: 22 March 2022

When repeated every five years it will, at the Province level, measure credibly change on farm And Could be the embryonic foundation for a Province wide, Credible MRV Vehicle

But..... There is a Catch.....

All Governments must report annually against agreed International GHG reduction targets The GHG National Inventory is the vehicle used to do this.

IPCC SOURCE AND SINK CATEGORIES	CO2	CH₄	N ₂ O	4. Land-Use, Land-Use Change and Forestry	CS, D, T1, T2, T3	D, T1, T2	D, T1, T2
1. Energy	M T1, T2, T3	M, T1, T2, T3	M, T1, T2, T3	A. Forest Land	CS, T1, T2, T3	D, T1	D, T1
A. Fuel Combustion (Sectoral Approach)	M, T1, T2, T3		M, T1, T2, T3	B. Cropland	CS, D	D, T1	D, T1
1. Energy Industries	T1, T3	T1, T2	T1, T2	C. Grassland	D, T1, T2, T3	D, T1	D, T1
2. Manufacturing Industries and Construction	T1, T2, T3	T1	T1	D. Wetlands	D, T1, T2, T3	D, T2	D, T2
3. Transport	M, T2, T3	M, T1, T3	M, T1, T3	E. Settlements	D, T1, T3	NA	T1
4. Other Sectors	T1, T2	T1	T1	F. Other Land	T1, T3	NA	T1
5. Other		30	3	G. Harvested wood products	T2		
B. Fugitive Emissions from Fuels	CS. T3	CS, T1, T3	CS, T3	H. Other	NA	NA	NA
1. Solid Fuels	NA	T1	NA	5. Waste	T1	T1, T2	T1
2. Oil and Natural Gas	CS, T3	CS, T1, T3	CS, T3	A. Solid Waste Disposal	NA	T2	NA
C. Carbon Dioxide Transport and Storage	NA		1	B. Biological treatment of solid waste	NA	T1	T1
3. Agriculture	T1	CS, T1, T2	T1, T2	C. Incineration and open burning of waste	T1	T1	T1
A. Enteric Fermentation		CS, T1, T2	NA	D. Wastewater treatment and discharge	NA	T1, T2	T1
B. Manure Management		T1, T2	T2	E. Other	NA	NA	NA
C. Rice Cultivation		NA	NA				
D. Agricultural Soils	- U	NA	T1				
E. Prescribed Burning of Savannas		NA	NA				
F. Field Burning of Agricultural Residues		NA	NA				
G. Liming	T1						
H. Urea Application	T1	1					
I. Other	NA	Ĩ	1				

But..... There is a Catch.....

All Governments must report annually against agreed International GHG reduction targets The GHG National Inventory is the vehicle used to do this.

IPCC SOURCE AND SINK CATEGORIES	CO2	CH₄	N ₂ O	4. Land-Use, Land-Use Change and Forestry	CS, D, T1, T2, T3		D, T1, T2
1. Energy	M T1, T2, T3	M, T1, T2, T3	M, T1, T2, T3		CS, T1, T2, T3	D, T1	D, T1
A. Fuel Compussion (Sectoral Approach)	M, T1, T2, T3		M, T1, T2, T3		CS, D	D, T1	D, T1
1. Energy Industries	T1, T3	T1, T2	T1, T2	C. Grassland	D, T1, T2, T3	D, T1	D, T1
2. Manufacturing Industries and Construction	T1, T2, T3	T1	T1	D. Wetlands	D, T1, T2, T3	D, T2	D, T2
3. Transport	M, T2, T3	M, T1, T3	M, T1, T3	E. Settlements	D, T1, T3	NA	T1
4. Other Sectors	T1, T2	T1	T1	F. Other Land	T1, T3	NA	T1
5. Other				G. Harvested wood products	T2	n.	
B. Fugitive Emissions from Fuels	CS. T3	CS, T1, T3	CS, T3	H-Outer	NA	NA	NA
1. Solid Fuels	NA	T1	NA	5. Waste	T1	T1, T2	T1
2. Oil and Natural Gas	CS, T3	CS, T1, T3	CS, T3	A. Solid Waste Disposal	NA	T2	NA
C. Carbon Dioxide Transport and Storage	NA		1	B. Biological treatment of solid waste	NA	T1	T1
3. Agriculture	T1	CS, T1, T2	T1, T2	C. Incineration and open burning of waste	T1	T1	T1
A. Enteric Formentation		CS, T1, T2	NA	D. Wastewater treatment and discharge	NA	T1, T2	T1
B. Manure Management		T1, T2	T2	E. Other	NA	NA	NA
C. Rice Cultivation		NA	NA	1			
D. Agricultural Soils	th.	NA	T1	1			
E. Prescribed Burning of Savannas		NA	NA	1			
F. Field Burning of Agricultural Residues		NA	NA	1			
G. Liming	T1	15 C		1			
H. Urea Application	T1		1				
I. Other	NA	Ĩ					

It is a collection of Individual Silos designed for easy Accounting & Reporting

But..... There is a Catch.....

IPCC SOURCE AND SINK CATEGORIES	CO2	CH₄	N ₂ O	4. Land-Use, Land-Use Change and Forestry	CS, D, T1, T2, T3	D, T1, T2	D, T1, T2
1. Energy	M T1, T2, T3	M, T1, T2, T3	M, T1, T2, T3	A. Forest Land	CS, T1, T2, T3	D, T1	D, T1
A. Fuel Combustion (Sectoral Approach)	M, T1, T2, T3		M, T1, T2, T3		CS, D	D, T1	D, T1
1. Energy Industries	T1, T3	T1, T2	T1, T2	C. Grassland	D, T1, T2, T3	D, T1	D, T1
2. Manufacturing Industries and Construction	T1, T2, T3	T1	T1	D. Wetlands	D, T1, T2, T3	D, T2	D, T2
3. Transport	M, T2, T3	M, T1, T3	M, T1, T3	E. Settlements	D, T1, T3	NA	T1
4. Other Sectors	T1, T2	T1	T1	F. Other Land	T1, T3	NA	T1
5. Other		1997 (1997) 1997 (1997)		G. Harvested wood products	T2		
B. Fugitive Emissions from Fuels	CS. T3	CS, T1, T3	CS, T3	H. Other	NA	NA	NA
1. Solid Fuels	NA	T1	NA	5. Waste	T1	T1, T2	T1
2. Oil and Natural Gas	CS, T3	CS, T1, T3	CS, T3	A. Solid Waste Disposel	NA	T2	NA
C. Carbon Dioxide Transport and Storage	NA		1	B. Biological treatment of solid waste	NA	T1	T1
3. Agriculture	T1	CS, T1, T2	T1, T2	C. Incineration and open burning of waste	T1	T1	T1
A. Entoric Formentation		CS, T1, T2	NA	D. Wastewater treatment and discharge	NA	T1, T2	T1
B. Manure Management	l.	T1, T2	T2	E. Other	NA	NA	NA
C. Rice Cultivation		NA	NA	1			
D. Agricultural Soils		NA	T1	t			
E. Prescribed Burning of Savannas	- 19 e.	NA	NA	1			
F. Field Burning of Agricultural Residues		NA	NA	1			
G. Liming	T1)				
H. Urea Application	T1						
I. Other	NA	-					

Farm Businesses don't fit within the Inventory, as they are multifaceted, they are split between a possibility of four different Silos, which do not allow recognition of each other.....

Perverse Outcomes will happen when only using Inventory....

It encourages Sectoral/Silo Targets to be set, which totally ignores the interconnectivity of farm activities & farms' abilities to deliver the cheapest options, first...

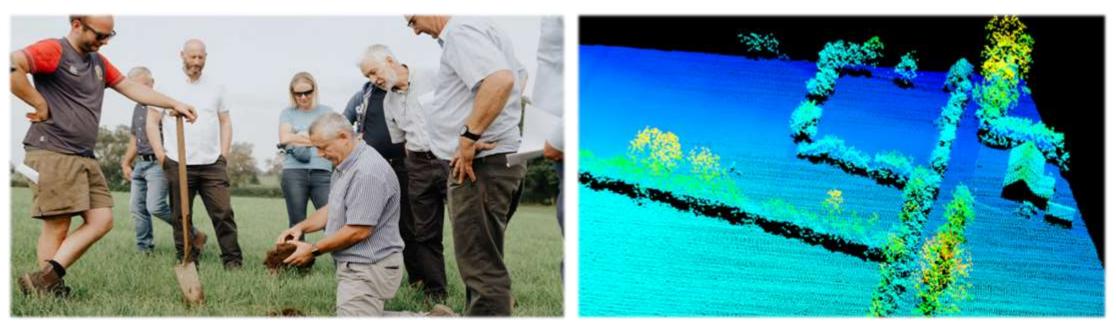

IPCC Category code	IPCC Category (level 2)	GHG	2019 Estimate (kt CO ₂ eq)	Level Assessment (%)	Cumulative Total of Level (%)
3.A	Enteric Fermentation	CH4	12,151.21	20.33	20.33
1.A.3	Transport	CO2	12,045.94	20.15	40.48
1.A.1.	Energy Industries	CO2	9,217.97	15.42	55.90
1.A.4	Other Sectors (Comm/Resid/Agric)	CO2	8,751.95	14.64	70.54
3. <mark>D</mark> .	Agricultural Soils	N20	5,723.32	9.57	80.11
1.A.2.	Manufacturing Industries and Construction	CO2	4,567.77	7.64	87.76
2.A.1	Cement Production	CO2	1,892.60	3.17	90.92
3.B	Manure Management	CH4	1,572.27	2.63	93.55
5.A	Solid Waste Disposal	CH4	676.88	1.13	94.68
2.F.1	Product Uses as Substitutes for ODS -Refrigeration and air-con	HFC	671.60	1.12	95.81

Table 1.3 Key Categories at IPCC Level 2 in 2019

Farm Businesses don't have the luxury to look at Carbon Neutrality, through single, silo lens

J. Gilliland's QUB Inaugural Lecture https://bit.ly/3MvNGUg

Achieving Net Zero – The Role of Increasing Carbon Stocks on Farm

Increasing Carbon Stocks is the poor relative to Reducing Emissions in Race to Net Zero

- Both are needed Simultaneously; Knowledge Gaps greatest in increasing Carbon Stocks
- Cost reduction, Smart MRV & Policy Recognition is Essential
- But Best tool to encourage positive farmer behavioural change.....

john.gilliland@devenish.com

Sustainable Meat and Livestock Production

